Interest Rate Future
Options and Valuation
Summary

◆ Interest Rate Future Option Definition
◆ Advantages of Trading Interest Rate Future Options
◆ Valuation
◆ A Real World Example
An interest rate future option gives the holder the right but not the obligation to buy or sell an interest rate future at a specified price on a specified date.

Interest rate future options are usually traded in an exchange.

It is used to hedge against adverse changes in interest rates.

The buyer normally can exercise the option on any business day (American style) prior to expiration by giving notice to the exchange.

Option sellers (writers) receive a fixed premium upfront and in return are obligated to buy or sell the underlying asset at a specified price.

Option writers are exposed to unlimited liability.
Advantages of Trading Interest Rate Futures Options

◆ An investor who expected short-term interest rates to decline would also be expecting the price of the future contracts to increase. Thus, they might be inclined to purchase a 3-month Eurodollar futures call option to speculate on their belief.

◆ The advantage of future options over options of a spot asset stems from the liquidity of futures contracts.

◆ Futures markets tend to be more liquid than underlying cash markets.

◆ Interest rate futures options are leveraged instruments.
Valuation

- The price of an interest rate future option is quoted by the exchange.
- A model is mainly used for calculating sensitivities and managing risk.
- European option approximation
 - Interest rate future options are normally American options. One may use an European option to approximate.
 - The present value of a call option is given by
 \[V(t) = NτD(L(t)Φ(d_1) - KΦ(d_2)) \]
 - The present value of a put option is given by
 \[V(t) = NτD(KΦ(-d_2) - L(t)Φ(-d_1)) \]
Valuation (Cont)

where

- t - the valuation date,
- $L(t) = 100 - Y(t; T, T_E) + C$ – the forward rate; C is used to match market future price.
- K – the strike
- N – the notional
- τ – the day count fraction for the forward period $[T, T_E]$
- T – the maturity of the future contract and also the start date of forward period
- T_E – the end date of the forward period
- $D = D(t, T)$ – the discount factor
- Φ – the accumulative normal distribution function
- $d_{1,2} = \left(\ln \left(\frac{L}{K} \right) \pm 0.5 \sigma^2 (T - t) \right) / (\sigma \sqrt{T - t})$
Interest Rate Future Option

Valuation (Cont)

- American option
 - Price interest rate future options as American options
 - Tree, PDE or lattice can be used to price an American option
 - Given interest rate future options are simple products, we use Black Scholes dynamics plus binomial tree to price an American interest rate future option.
Interest Rate Future Option

A Real World Example

<table>
<thead>
<tr>
<th>Future option specification</th>
<th>Underlying future specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quote Price</td>
<td>0.05</td>
</tr>
<tr>
<td>Trade Date</td>
<td>11/23/2016</td>
</tr>
<tr>
<td>Option Maturity Date</td>
<td>6/19/2017</td>
</tr>
<tr>
<td>Settlement Amount</td>
<td>-62500</td>
</tr>
<tr>
<td>Settlement Date</td>
<td>11/23/2016</td>
</tr>
<tr>
<td>Strike</td>
<td>98.75</td>
</tr>
<tr>
<td>Option Ticker</td>
<td>EDM17P 98.75</td>
</tr>
<tr>
<td>Call Put</td>
<td>Put</td>
</tr>
<tr>
<td>Currency</td>
<td>USD</td>
</tr>
<tr>
<td>Buy Sell</td>
<td>Buy</td>
</tr>
<tr>
<td>Contract Size</td>
<td>10000</td>
</tr>
<tr>
<td>First Delivery Date</td>
<td>5/30/2017</td>
</tr>
<tr>
<td>Last Delivery Date</td>
<td>6/30/2017</td>
</tr>
<tr>
<td>Future Maturity Date</td>
<td>6/19/2017</td>
</tr>
<tr>
<td>Tenor</td>
<td>3M</td>
</tr>
<tr>
<td>Future Ticker</td>
<td>EDM17</td>
</tr>
<tr>
<td>Future Ticker Size</td>
<td>100</td>
</tr>
<tr>
<td>Number of Contract</td>
<td>500</td>
</tr>
</tbody>
</table>
Thanks!

You can find more details at https://finpricing.com/lib/EqRainbow.html